

CONFLEX 316

Conducting Spring Materials

Product Overview

Conflex conducting spring materials offer cost and performance advantages over traditional currentcarrying spring materials, such as solid copper, beryllium copper, and phosphor bronze, by combining the strength and spring properties of steel with the conductivity of copper. Virtually any combination of strength, elasticity, and conductivity is achievable with the proper material selection and placement in the clad composite.

Typical applications include electrical contact blades, carrier strips, switch components, sliding contact fingers, pressure diaphragms, grounding strips, terminals, fuse clips and many other applications requiring structural strength combined with electrical and thermal conductivity.

Copper

Steel

Copper

Features

- Increased yield through lower density
- Reduced material thickness due to higher modulus of elasticity
- Greater strength from steel component
 - Greater flexibility through custom systems with custom performance characteristics

Description

EMS DesignationCONFLEX 316CompositionCopper / 1065 Steel / CopperRatios5 / 90 / 5

Chemical Composition

<u>UNS</u>	<u>Grade Eur</u>	<u>Chemistry %</u>
C10200	OF-Cu	Cu+Ag 99.95 min., 0 0.0010 max.
G10650	Din 1.123	C 0.60-0.70, Mn 0.60-0.90, P 0.04 max., S 0.05 max.

Physical Properties	Eng	glish	Metric			
Density	0.287	lb/in³	7.94	g / cm3		
Electrical Conductivity	16	%IACS	0.093	μS / cm		
Electrical Resistivity	64.8	cir mil ohm / ft	10.8	µohms-cm		
Modulus of Elasticity	25,000	Kpsi	172	GPa		
Coefficient of Thermal Expansion	7.2	µin /in-°F	13.0	µm /m-°C		
Maxiumum Service Temperature	200 - 300	°F	93 - 150	°C		

Formability

The high carbon steel core produces a clad composite with good formabilty and excellent spring properties.

CONFLEX 316

Conducting Spring Materials

Process Design

CONFLEX is typically provided fully annealed or with a cold rolled temper. If a heat treated temper is required, it is normal to perform this after parts fabrication. The standard heat treatment procedure is to anneal the product between 1,500 - 1,550 °F (815 - 840 °C) for 2 - 5 minutes, quench, and then heat treat for 30 minutes at the target tempering temperature.

Mechanical Properties										
System	Components	Ratio	Condition	Tensile Strength		0.2% Yield Strength		Elongation	Hardness (Steel)	
				Kpsi	MPa	Kpsi	MPa	(% in 2")	Vickers	Rockwell
Conflex 316	OF Copper 1065 Steel OF Copper	5% 90% 5%	Annealed	75	517	64	441	30	170	B87
			21% Cold Work Temper	107	738	97	669	8	257	C24
			37% Cold Work Temper	130	896	119	820	6	302	C30
			60% Cold Work Temper	153	1055	143	986	3	340	C35
			Heat Treat Temper, 900 °F	165	1138	145	1000	7	390	C40
			Heat Treat Temper, 700 °F	210	1448	190	1310	6	485	C48
			Heat Treat Temper, 500 °F	240	1655	220	1517	4	610	C56

Availability

- **Gauge** 0.0030 0.0600 inches (0.08 1.5 mm)
- WidthWidths up to 20 inches (508 mm) available
- Ratio Others available upon request
- Surface Bright (polished) or matte
- **Temper** Annealed, cold rolled, and heat treated tempers available.
- Form Coils or sheets

Engineered Materials Solutions EMSA 39 Perry Avenue Attleboro, MA 02703 Phone: +1 508 342 2100 Fax: +1 508 342 2125 E-mail: solutions@emsclad.com Engineered Materials Solutions EMSH 600 Valley Road Hamburg, PA 19526 Phone: +1 610 562 3841 Fax: +610 562 5800 E-mail: solutions@emsclad.com

Engineered Materials Solutions EMSC Italian Industrial Park Baoying, Jiangsu, 225800 PR China Phone: +86 514 8891 6888 Fax: +86 514 8891 6889 E-mail: solutions@emsclad.com

